合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(三)
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(一)
> 農(nóng)藥霧滴霧化與在玉米植株上的沉積特性研究
> 高灰細(xì)粒難浮煤泥浮選試驗(yàn):復(fù)配捕收劑最佳復(fù)配比和用量
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(一)
> 多頻超聲波技術(shù)&人工神經(jīng)網(wǎng)絡(luò)構(gòu)建變壓器油界面張力預(yù)測模型(二)
> 環(huán)保非水基鉆井液界面張力、基本性能和抗污染能力——結(jié)果與討論、結(jié)論與認(rèn)識
> SF作為天然表面活性劑制造納米器件,大大改善疏水表面的水潤濕性
> 超微量天平應(yīng)用案例:鉛試金富集稱量法測定含銅物料中金和銀含量
> 磷脂膜破裂臨界時間和臨界表面張力值分析方法
推薦新聞Info
-
> 4種新型稀土雙酞酞菁衍生物合成及LB膜的制備
> 聚合物稠化劑(ASCM)合成條件、界面張力及耐鹽、耐剪切性能(四)
> 聚合物稠化劑(ASCM)合成條件、界面張力及耐鹽、耐剪切性能(三)
> 聚合物稠化劑(ASCM)合成條件、界面張力及耐鹽、耐剪切性能(二)
> 聚合物稠化劑(ASCM)合成條件、界面張力及耐鹽、耐剪切性能(一)
> 新型多羥基苯磺酸鹽驅(qū)油劑的界面張力優(yōu)化及油田應(yīng)用潛力分析(三)
> 新型多羥基苯磺酸鹽驅(qū)油劑的界面張力優(yōu)化及油田應(yīng)用潛力分析(二)
> 新型多羥基苯磺酸鹽驅(qū)油劑的界面張力優(yōu)化及油田應(yīng)用潛力分析(一)
> 基于最大氣泡壓力方法測量液態(tài)鋰錫合金表面張力
> 烷基糖苷表面活性劑界面張力與潤濕性相關(guān)性研究(二)
鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(三)
來源:礦業(yè)研究與開發(fā) 瀏覽 265 次 發(fā)布時間:2025-11-04
3.2.2霧化區(qū)分布范圍
噴霧場可分為霧化區(qū)和惰性凝結(jié)區(qū),霧化區(qū)范圍決定霧場內(nèi)有效降塵范圍,對噴霧降塵效果至關(guān)重要。圖6為礦井水和純水的表面平均粒徑(SMD)和體積平均粒徑(VMD)及霧化區(qū)分布范圍變化情況。由圖6可知,在相同壓力下,各溶液霧滴粒徑隨噴射距離增加而減小,當(dāng)測點(diǎn)位置到達(dá)某一臨界點(diǎn)后,霧滴粒徑呈現(xiàn)增大趨勢,該臨界點(diǎn)即霧化區(qū)和惰性凝結(jié)區(qū)交界處。這表明霧場粒徑細(xì)化受噴射距離限制,噴霧形成初期,噴霧壓力對大粒徑霧滴的輸送能力略弱于小粒徑霧滴,因此隨著噴出距離增加,部分大粒徑霧滴沉降到地面;另一方面,當(dāng)霧滴在霧化區(qū)內(nèi)運(yùn)動時,由于持續(xù)受到壓力作用而分裂成更細(xì)小的霧粒。
當(dāng)進(jìn)入惰性凝結(jié)區(qū),噴霧壓力對霧滴的推動能力逐漸微弱,霧場中出現(xiàn)霧滴凝結(jié)沉降或細(xì)顆粒蒸發(fā)消失,粒徑開始增大。純水、礦井水1#至4#和礦井水5#至8#的霧化區(qū)粒徑臨界點(diǎn)分別為18cm、14.5cm、8.5cm,分布范圍差異明顯。這是由于Na+、K+離子濃度差異導(dǎo)致在噴霧過程中各組溶液所受表面張力不同,這表明霧化特性隨表面張力減小而明顯改善,在相同壓力下,較小的表面張力產(chǎn)生更快的噴射速度,迫使噴霧與空氣更充分相互作用并使霧化過程更完整。綜上所述,溶液表面張力決定噴霧形成過程中的破碎程度,從而影響霧化區(qū)范圍和噴霧霧化特性。
3.2.3噴霧平均粒徑和特征粒徑
細(xì)觀霧化特性評價指標(biāo)主要為霧滴粒徑,霧滴粒徑對沉降粉塵具有重要影響,在多種評價霧滴粒徑的指標(biāo)中,應(yīng)用最廣泛的為平均粒徑(表面積平均粒徑 D32 及體積平均粒徑 D43 )、特征粒徑(D0.1、D0.5、D0.9),D0.1、D0.5、D0.9 分別表示小于此粒徑的的表示小于此粒徑的顆粒體積含量分別占全部顆粒總體積的10%、50%、90%。純水、礦井水1#至4#粒徑均值、礦井水5#至8#粒徑均值如圖7所示。
由圖7可知,各溶液平均粒徑和特征粒徑隨測點(diǎn)距離的增加呈現(xiàn)先減小后增大的趨勢。這是由于礦井水噴出后受到水泵壓力作用,不斷破碎成細(xì)小霧滴。隨著測點(diǎn)距離增加,水泵壓力對噴霧形成的促進(jìn)作用逐漸減弱,此時礦井水表面張力對霧滴破裂的阻礙作用占據(jù)主導(dǎo)地位,霧滴平均粒徑和特征粒徑開始增大。此外,霧滴運(yùn)動過程中,大粒徑霧滴凝并沉降和小粒徑霧滴蒸發(fā)消散也是出現(xiàn)這一現(xiàn)象的重要原因。
礦井水1#至8#在15cm處的平均粒徑和特征粒徑逐漸增大,這說明表面張力對噴霧平均粒徑和特征粒徑具有直接影響。礦井水1至4#各平均粒徑和特征粒徑之間差異明顯,而其余溶液差異較小,這表明純水和礦井水5#至8#的噴霧粒徑分布優(yōu)于礦井水1至4,霧場中霧滴更趨向均一化分布,易于捕集沉降粉塵。綜上,礦井水中Na+、K+離子濃度對其表面張力及噴霧液滴粒徑變化趨勢至關(guān)重要,對于霧場中噴霧粒徑的均一性和各平均粒徑和特征粒徑的差異性也有重要影響。
3.3 Na+、K+濃度對霧化特性的影響機(jī)制
結(jié)合試驗(yàn)結(jié)果,得到礦井水Na+、K+濃度對噴霧霧化特性的影響機(jī)制如圖8所示。溶液中Na+、K+等離子濃度通過改變其表面張力,間接影響噴霧霧場性能。當(dāng)溶液中Na+、K+等離子濃度減小,氣-水界面對離子排斥作用減弱,導(dǎo)致溶液表面張力減小。
在噴霧形成過程中,空氣動力相同時,表面張力對霧滴破碎的阻礙作用決定粒徑分布情況,所以表面張力減小,溶液可分裂成無數(shù)尺寸細(xì)小的霧滴,其粒徑隨之細(xì)化。霧化是液體射出噴嘴后,受噴霧壓力作用不斷破碎呈霧滴的過程,因此礦井水表面張力減小后,霧滴破碎受到的抑制力減弱,霧化過程適量延長,霧化區(qū)范圍隨之增大。隨著液體不斷分裂破碎,霧滴粒徑逐漸集中分布于某區(qū)間,各霧滴之間趨向均一化分布。
4、結(jié)論
(1)研究了離子濃度對溶液表面張力影響,研究結(jié)果表明:純水和礦井水1#表面張力分別為57.73 mN/m和76.32 mN/m,兩者差異顯著,表明在低離子濃度條件下,礦井水中Na+、K+離子濃度對其表面張力有重要影響,Na+、K+通過改變氣-水界面離子分布和吸附勢能影響溶液表面張力,表面張力大小與其Na+、K+離子濃度呈正相關(guān),離子濃度可通過改變表面張力從而影響噴霧霧化特性。
(2)利用試驗(yàn)研究分析了礦井水和純水的噴霧霧化特性,研究結(jié)果表明:純水和礦井水1#在15 cm處體積平均粒徑(VMD)分別為36.85μm和60.19μm,純水噴霧粒徑明顯小于礦井水,且噴霧霧化百分比更大,可高效捕捉粉塵顆粒。溶液表面張力對噴霧霧化特性至關(guān)重要,噴霧粒徑分布隨表面張力減小而逐漸優(yōu)化;霧化區(qū)范圍隨礦井水表面張力減小逐漸擴(kuò)大,當(dāng)表面張力對液滴破碎過程抑制作用減弱,噴霧霧化區(qū)范圍隨之延長。因此,隨著礦井水表面張力減小,噴霧降塵效率提高。
(3)通過研究各溶液的平均粒徑和特征粒徑,分析了溶液表面張力對噴霧霧場中噴霧粒徑的均一性和各平均粒徑和特征粒徑的差異性的影響,研究結(jié)果表明:表面張力越小,霧場中液滴粒徑差異越小,趨向于均一性分布。





