国内精品久久久久久影视8_99久久精品国产一区二区三区_国产精品国产三级欧美二区 _成人在线国产

芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯合大學.jpg

聯合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

蛋白質外聚物中多糖的比例——結論、致謝!

來源:上海謂載 瀏覽 2739 次 發布時間:2021-10-12


四、結論


油和/或 Corexit 的存在會導致 EPS 的蛋白質:多糖比率更高,并在中胚層實驗中降低 SFT。 在這些實驗中,SFT 與 蛋白質:具有負斜率的 EPS 多糖。 當開闊的海洋 水域和兩種不同的沿海水處理進行了比較, 蛋白質趨勢:多糖為 CEWAF > DCEWAF > WAF ≥ Control 并且對于 SFT,它是相反的, CEWAF < DCEWAF < WAF ≤ 對照。 因此,SFT 與膠體 EPS 中的蛋白質:多糖比率成反比。


當中宇宙水柱的不同尺寸分數為 相比之下,我們發現 EPS 膠體可以降低 SFT 蛋白質:多糖比例,表明有效的生物乳化 蛋白質的容量。 粒子濾波中 SFT 的比較 分數 (< 0.45 μm) 和 EPS 膠體分數 (< 0.45 μm 和 > 3 kDa),對于真正溶解的部分 (< 3 kDa),它是 表明只有前兩個包含 EPS 的部分具有容量 以降低 SFT,而 < 3 kDa 級分顯示與以下相同的 SFT 純海水或只有真正溶解有機碳的海水。


顯微鏡技術(即 CLSM 和 SEM)證實,正如預測的那樣,蛋白質主要在空氣 - 水界面富集, 強烈影響空氣/水界面處的 SFT 治療。 這些技術還可視化了不同的聚集體尺寸 和它們的分散,以及聚集體形成的重要性 通過陰離子EPS組分部分之間的Ca2+"橋接"。 SFT 可能會發生微小的變化,與蛋白質:多糖比率的變化相吻合,這可能是 pH 值變化的原因(十分之一) 單位),如 EPS 模型化合物所示,這可能在 CMC 周圍最為突出。 此外,我們表明蛋白質和酸性多糖的 EPS 模型成分比 Corexit 導致海水中膠束的自組裝甚至 當這些成分的濃度很低時。 這個 表明 EPS 在形成方面與 Corexit 相同或更有效 乳液。 然而,關于相互作用的更系統的研究 不同組件的不同組合,以及更多型號 單獨的化合物,可能需要更多地闡明在我們的中宇宙實驗中觀察到的復雜性。


致謝


這項研究得到了墨西哥灣的資助 支持名為 ADDOMEx 的聯盟研究的研究計劃 (微生物對分散劑和油的聚集和降解 Exopolymers) 聯盟。 原始數據可以在海灣找到 墨西哥研究倡議信息和數據合作組織 (GRIIDC) 在網址 https://doi.org/10.7266/N7PK0D64; https://doi.org/10。 7266/N78P5XZD; https://doi.org/10.7266/N74X568X; https://doi. org/10.7266/N79W0D1K。


參考


Angarska, J.K., Dimitrova, B.S., Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., Lips, A., 2004. Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture. Langmuir 20, 1799–1806. https://doi.org/10.1021/la035751.


Bopp, R., Santschi, P.H., Li, Y.-H., Deck, B.L., 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems. Org. Geochem. 3, 9–14. https://doi. org/10.1016/0146-6380(81)90007-3.


Bretherton, L., Williams, A.K., Genzer, J., Hillhouse, J., Kamalanathan, M., Finkel, Z.V., Quigg, A., 2018. Physiological response of 10 phytoplankton species exposed to Macondo oil and Corexit. J. Phycol. 54 (3), 317–328. https://doi.org/10.1111/jpy. 12625.


Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. https://doi.org/10.1146/annurev.marine.010908.163904.


Cai, Z., Gong, Y., Liu, W., Fu, J., O'Reilly, S.E., Hao, X., Zhao, D., 2016 Aug 15. 2016. A surface tension based method for measuring oil dispersant concentration in seawater. Mar. Pollut. Bull. 109 (1), 49–54. https://doi.org/10.1016/j.marpolbul.2016.06.028.


Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Ltd, London. Chin, W.-C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. https://doi.org/10. 1038/35345.


Chiu, M.-H., Garcia, S.G., Hwang, B., Claiche, D., Sanchez, G., Aldayafleh, R., Tsai, S.-M., Santschi, P.H., Quigg, A., Chin, W.-C., 2017. Corexit, oil and marine microgels. Mar. Pollut. Bull. 122, 376–378. https://doi.org/10.1016/j.marpolbul.2017.06.077.


da Cruz, G.F., Angolini, C.F.F., dos Santos Neto, E.V., Loh, W., Marsaioli, A.J., 2010. Exopolymeric substances (EPS) produced by petroleum microbial consortia. J. Braz. Chem. Soc. 21 (8), 1517–1523. https://doi.org/10.1590/S0103- 50532010000800016.


Decho, A.W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. https://doi.org/10.1010/S0278-4343(00)00022-4.


Doyle, S.M., Whitaker, E.A., De Pascuale, V., Wade, T.L., Knap, A.H., Santschi, P.H., Quigg, A., Sylvan, J.B., 2018. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and corexit. Front. Microbiol. 1–16. https://doi.org/10.3389/fmicb.2018.00689. Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, UK. Ghosh, A.K., Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloidsa. In: Intech Open Science, https://doi.org/10.5772/50561. Guo, L., Coleman Jr., C.H., Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem. 45, 105–119. https://doi. org/10.1016/0304-4203(94)90095-7.


Gutierrez, T., Shimmield, T., Haidon, C., Black, K., Green, D.H., 2008. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. Strain TG12. Appl. Environ. Microbiol. 4867–4876. https:// doi.org/10.1128/AEM.00316-08.


Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., 2017. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environ. Sci. Technol. 51, 3233–3241. https://doi.org/10.1021/acs.est.6b05475.


Hatcher, P.G., Obeid, W., Wozniak, A.S., Xu, C., Zhang, S., Santschi, P.H., Quigg, A., 2018. Identifying oil/marine snow associations in mesocosm simulations of the deep water horizon oil spill event using solid-state 13C NMR spectroscopy. Mar. Pollut. Bull. 126, 159–165. https://doi.org/10.1016/j.marpolbul.2017.11.004.


Hung, C.-C., Santschi, P.H., 2001. Spectrophotometric determination of total uronic acids in seawater using cation exchange separation and pre-concentration lyophilization. Anal. Chim. Acta 427, 111–117. https://doi.org/10.1016/S0003-2670(00)01196-X.


Hung, C.-C., Guo, L., Schultz, G., Pinckney, J.L., Santschi, P.H., 2003. Production and fluxes of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 17 (2), 1055. https://doi.org/10.1029/2002GB001988. Kamalanathan, M., Schwehr, K.A., Bretherton, L.J., Genzer, J., Hillhouse, J., Xu, C., Williams, A., Santschi, P.H., Quigg, A., 2018. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform infrared spectroscopy. Mar. Pollut. Bull. 130, 170–178. https://doi.org/10.1016/j.marpolbul.2018.03.027.


McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316. https://doi.org/10.1039/C0SM00549E. Millero, F.J., 1996. Chemical Oceanography. CRC Press, Boca Raton, FL, pp. 469. Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107, 254–255.


Padday, J.F., Pitt, A.R., Pashley, R.M., 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc., Faraday Trans. 1 71, 1919–1931. https://doi.org/10.1039/F19757101919.


Passow, U., Hetland, R.D., 2016. What happened to all of the oil? Oceanography 29, 88–95. https://doi.org/10.5670/oceanog.2016.73.


Pletikapic, G., Lannon, H., Murvai, U., Kellermayer, M.S.Z., Svetlicic, V., Brujic, J., 2014. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys. J. 107, 355–364. https://doi.org/10.1016/j.bpj.2014.04.065.


Prairie, J.C., Ziervogel, K., Camassa, R., McLaughlin, R.M., White, B.L., Dewald, C., Arnosti, C., 2015. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175, 28–38. https://doi.org/10.1016/j.marchem.2015.04.006.


Quigg, A., Passow, U., Chin, W.-C., Xu, C., Doyle, S., Bretherton, L., Kamalanathan, M., Williams, A.K., Sylvan, J.B., Finkel, Z.V., Knap, A.H., Schwehr, K.A., Zhang, S., Sun, L., Wade, T.L., Obeid, W., Hatcher, P.G., Santschi, P.H., 2016. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 1, 3–26. https://doi.org/10.1002/lol2.10030.


Santschi, P.H., 2017. Texas A&M University Introduces Exopolymeric Substances as Agents in Enhancing the Self-Cleansing Capacity of Natural Waters. American Exopolymerics Science & Technology 25 feature article. http://www. paneuropeannetworks.com/special-reports/american-exopolymerics/. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380. https://doi.org/10.5004/dwt.2010.1079.


Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, E.K., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. https://doi.org/10.1016/0003- 2697(85)90442-7.


Sun, L., Xu, C., Zhang, S., Lin, P., Schwehr, K.A., Quigg, A., Chiu, M.-H., Chin, W.-C., Santschi, P.H., 2017. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681. https://doi.org/10.1016/j.chemosphere.2017. 04.099.


Tako, M., 2015. The Principle of Polysaccharide Gels. Adv. Biosci. Biotechnol. 6, 22–36. https://doi.org/10.4236/abb.2015.61004.


Tcholakova, S., Denkov, N.D., Lips, A., 2008. Phys. Chem. Chem. Phys. 10, 1608–1627. Tsai, S.M., Bangalore, P., Chen, E.Y., Lu, D., Chiu, M.H., Suh, A., Gehring, M., Cangco, J.P., Garcia, S.G., Chin, W.C., 2017. Graphene-induced apoptosis in lung epithelial cells through EGFR. J. Nanopart. Res. 19, 262–275. https://doi.org/10.1007/s11051- 017-3957-9.


Verdugo, P., Santschi, P.H., 2010. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res. II 57, 1486–1493. https://doi.org/10.1016/j.dsr2.2010. 03.002.


Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U., Santschi, P.H., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. https://doi.org/10.1016/j.marchem.2004.06.017.


Wade, T.L., Sweet, S.T., Sericano, J.L., Guinasso Jr., N., Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Shiller, A.M., Lohrenz, S.E., Joye, S.B., 2011. Analyses of water samples from the deepwater horizon oil spill: documentation of the sub-surface plume. In: Liu, Y. (Ed.), Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series. Vol. 195. AGU, Washington, D. C, pp. 77–82.


Wade, T.L., Morales-McDevitt, M., Bera, G., Shi, D., Sweet, S., Wang, B., Gold-Bouchot, G., Quigg, A., Knap, A.H., 2017. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Marine Heliyon 3, e00419. https://doi.org/10.1016/j.heliyon.2017.e00419.


Wang, L., Yoon, R.-H., 2004. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte. Langmuir 20, 11457–11464. https://doi.org/10. 1021/la048672g.


Warszynski, P., Barzyk, W., Lunkenheimer, K., Fruhner, H., 1998. Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment. J. Phys. Chem. B 102, 10948. https://doi.org/10.1021/jp983901r. Xu, C., Zhang, S.J., Chuang, C.Y., Miller, E.J., Schwehr, K.A., Santschi, P.H., 2011. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 126, 27–36. https://doi.org/10.1016/j.marchem.2011.03.004.


Xu, C., Zhang, S., Beaver, M., Wozniak, A., Obeid, W., Lin, Y., Wade, T.L., Schwehr, K.A., Lin, P., Sun, L., Hatcher, P.G., Kaiser, K., Chin, W.-C., Chiu, M.-H., Knap, A., Kopp, K., Quigg, A., Santschi, P.H., 2018a. Decreased sedimentation efficiency of petro-carbon and non-petro-carbon caused by water-accommodated-fraction (WAF) and Corexitenhanced water-accommodated-fraction (CEWAF) in a coastal microbial communityseeded mesocosmt. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.002.


(In press). Xu, C., Zhang, S., Beaver, M., Lin, P., Sun, L., Doyle, S.M., Sylvan, J.B., Wozniak, A., Hatcher, P.G., Kaiser, K., Yan, G., Schwehr, K.A., Lin, Y., Wade, T.L., Chin, W.-C., Chiu, M.-H., Quigg, A., Santschi, P.H., 2018b. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.005. (In press).


Z?ncker, B., Bracher, A., R?ttgers, R., Engel, A., 2017. Variations of the organic matter composition in the sea surface microlayer: a comparison between open ocean, coastal, and upwelling sites off the Peruvian coast. Front. Microbiol. 8, 2369. https:// doi.org/10.3389/fmicb.2017.02369.



蛋白質外聚物中多糖的比例——摘要、簡介

蛋白質外聚物中多糖的比例——方法

蛋白質外聚物中多糖的比例——結果與討論

蛋白質外聚物中多糖的比例——結論、致謝!

国内精品久久久久久影视8_99久久精品国产一区二区三区_国产精品国产三级欧美二区 _成人在线国产
日韩午夜激情电影| 91国模大尺度私拍在线视频| 亚欧色一区w666天堂| 亚洲日本在线看| 亚洲图片你懂的| 亚洲欧美国产毛片在线| 亚洲柠檬福利资源导航| 成人欧美一区二区三区黑人麻豆| 国产精品传媒视频| 亚洲制服丝袜一区| 日韩 欧美一区二区三区| 老司机午夜精品99久久| 久久99精品久久久久久国产越南| 国产精品中文字幕一区二区三区| 精品一区二区在线视频| 懂色av一区二区在线播放| 99精品国产视频| 欧美亚日韩国产aⅴ精品中极品| 欧美午夜不卡视频| 日韩欧美国产午夜精品| 国产亚洲一区字幕| 亚洲黄色小说网站| 日本欧美大码aⅴ在线播放| 久久国产精品99精品国产| 国产suv精品一区二区883| 91在线视频免费91| 欧美一二三四在线| 国产精品久久久久久久久久久免费看| 一二三四区精品视频| 美女视频网站黄色亚洲| 99精品视频中文字幕| 欧日韩精品视频| 久久亚洲综合av| 亚洲欧美日韩中文播放| 蜜臂av日日欢夜夜爽一区| 成人黄色av网站在线| 欧美日韩亚洲高清一区二区| 亚洲精品一区在线观看| 一区二区三区日韩欧美精品| 久久99蜜桃精品| 91成人免费电影| 国产香蕉久久精品综合网| 亚洲综合在线视频| 国产一区二区三区黄视频| 欧美亚洲精品一区| 中文字幕一区二区三区四区不卡| 日韩国产一二三区| 99国产精品久久| 久久你懂得1024| 日本一不卡视频| 欧美亚洲尤物久久| 中文字幕制服丝袜一区二区三区| 精品在线你懂的| 欧美亚洲另类激情小说| 中文字幕一区二| 成人久久视频在线观看| 欧美一区二区福利在线| 亚洲国产日韩精品| 99久久综合99久久综合网站| 久久这里只精品最新地址| 日韩电影免费在线看| 欧美在线一二三四区| 亚洲欧美在线视频观看| 成人综合激情网| 国产偷国产偷亚洲高清人白洁| 日韩电影一二三区| 91精品国产色综合久久ai换脸| 亚洲午夜在线视频| 欧美日韩高清一区二区三区| 亚洲欧美日韩在线| 91黄色免费看| 亚洲国产日韩在线一区模特| 91福利视频网站| 亚洲精品视频在线| 一本到不卡精品视频在线观看| 国产精品国产自产拍高清av| 成人深夜福利app| 中文字幕免费不卡在线| 成人一区二区三区视频在线观看 | 3d动漫精品啪啪1区2区免费| 尤物在线观看一区| 欧美亚洲动漫精品| 首页综合国产亚洲丝袜| 欧美肥大bbwbbw高潮| 视频一区视频二区中文| 欧美理论电影在线| 韩国三级在线一区| 国产欧美一区二区精品性色| 成人小视频在线| 亚洲欧美日韩久久精品| 在线亚洲免费视频| 天天综合天天综合色| 亚洲精品一区二区三区蜜桃下载 | 国产一区二区h| 久久色.com| 99热精品国产| 日韩电影在线观看电影| 精品剧情v国产在线观看在线| 粉嫩嫩av羞羞动漫久久久| 一区二区久久久久| 精品国产污污免费网站入口 | 欧美体内she精高潮| 免费成人小视频| 中文字幕一区二| 日韩久久免费av| 91视频免费播放| 免费精品99久久国产综合精品| 久久久久久夜精品精品免费| 91老师片黄在线观看| 老鸭窝一区二区久久精品| 综合色中文字幕| 日韩女优制服丝袜电影| 色婷婷av久久久久久久| 狠狠色丁香久久婷婷综| 亚洲bt欧美bt精品777| 日本一区二区免费在线观看视频| 欧美日韩午夜精品| 成人高清av在线| 精品一区二区久久| 亚洲成人av电影在线| 亚洲欧洲精品天堂一级| 久久久久久综合| 日韩欧美国产一区在线观看| 欧美亚洲尤物久久| k8久久久一区二区三区| 久久成人免费网站| 日韩综合小视频| 一区二区三区四区在线播放| 国产日韩亚洲欧美综合| 欧美videossexotv100| 欧美一区二区福利在线| 欧美日本乱大交xxxxx| 色偷偷久久一区二区三区| 成人免费毛片a| 黄色小说综合网站| 玖玖九九国产精品| 免费成人性网站| 日本亚洲天堂网| 日本不卡一区二区三区| 亚洲第一成人在线| 一区二区三区在线观看动漫 | 26uuu亚洲综合色欧美| 日韩一级在线观看| 欧美精品色综合| 欧美日韩视频第一区| 欧美日韩中文字幕一区二区| 91啦中文在线观看| 在线亚洲一区观看| 欧美性大战久久| 欧美日韩另类一区| 日韩亚洲欧美高清| 精品福利二区三区| 国产欧美日韩在线观看| 中文字幕日韩一区| 亚洲精品免费在线观看| 一区二区三区在线观看欧美 | www国产成人免费观看视频 深夜成人网| 91精品久久久久久久99蜜桃 | 国产福利91精品| 99视频一区二区| 在线亚洲免费视频| 欧美一区午夜精品| 亚洲精品一区二区三区蜜桃下载| 久久男人中文字幕资源站| 国产欧美一区二区三区在线老狼| 18欧美亚洲精品| 午夜亚洲福利老司机| 九九九精品视频| 99久久婷婷国产精品综合| 欧美亚洲免费在线一区| 欧美电影免费观看完整版| 国产精品毛片无遮挡高清| 亚洲一区二区av电影| 久久精品国产澳门| 成人高清视频在线| 在线观看亚洲精品视频| 日韩精品一区在线| 亚洲久本草在线中文字幕| 免费成人在线观看| jvid福利写真一区二区三区| 9191精品国产综合久久久久久| 久久中文娱乐网| 亚洲福利国产精品| 国内一区二区视频| 一本一道久久a久久精品综合蜜臀| 欧美精品一卡二卡| 亚洲欧美在线观看| 久久99精品国产麻豆婷婷洗澡| 风流少妇一区二区| 欧美一区二区三区四区五区| 亚洲国产高清在线| 青娱乐精品视频| 91黄色免费网站| 国产精品午夜在线| 久久国产精品72免费观看| 欧美影视一区二区三区| 中文字幕在线不卡一区二区三区| 免费成人在线网站| 欧美三电影在线| 亚洲色图在线看|