国内精品久久久久久影视8_99久久精品国产一区二区三区_国产精品国产三级欧美二区 _成人在线国产

芬蘭Kibron專注表面張力儀測量技術(shù),快速精準測量動靜態(tài)表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯(lián)合大學.jpg

聯(lián)合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

蛋白質(zhì)外聚物中多糖的比例——結(jié)論、致謝!

來源:上海謂載 瀏覽 2662 次 發(fā)布時間:2021-10-12


四、結(jié)論


油和/或 Corexit 的存在會導(dǎo)致 EPS 的蛋白質(zhì):多糖比率更高,并在中胚層實驗中降低 SFT。 在這些實驗中,SFT 與 蛋白質(zhì):具有負斜率的 EPS 多糖。 當開闊的海洋 水域和兩種不同的沿海水處理進行了比較, 蛋白質(zhì)趨勢:多糖為 CEWAF > DCEWAF > WAF ≥ Control 并且對于 SFT,它是相反的, CEWAF < DCEWAF < WAF ≤ 對照。 因此,SFT 與膠體 EPS 中的蛋白質(zhì):多糖比率成反比。


當中宇宙水柱的不同尺寸分數(shù)為 相比之下,我們發(fā)現(xiàn) EPS 膠體可以降低 SFT 蛋白質(zhì):多糖比例,表明有效的生物乳化 蛋白質(zhì)的容量。 粒子濾波中 SFT 的比較 分數(shù) (< 0.45 μm) 和 EPS 膠體分數(shù) (< 0.45 μm 和 > 3 kDa),對于真正溶解的部分 (< 3 kDa),它是 表明只有前兩個包含 EPS 的部分具有容量 以降低 SFT,而 < 3 kDa 級分顯示與以下相同的 SFT 純海水或只有真正溶解有機碳的海水。


顯微鏡技術(shù)(即 CLSM 和 SEM)證實,正如預(yù)測的那樣,蛋白質(zhì)主要在空氣 - 水界面富集, 強烈影響空氣/水界面處的 SFT 治療。 這些技術(shù)還可視化了不同的聚集體尺寸 和它們的分散,以及聚集體形成的重要性 通過陰離子EPS組分部分之間的Ca2+"橋接"。 SFT 可能會發(fā)生微小的變化,與蛋白質(zhì):多糖比率的變化相吻合,這可能是 pH 值變化的原因(十分之一) 單位),如 EPS 模型化合物所示,這可能在 CMC 周圍最為突出。 此外,我們表明蛋白質(zhì)和酸性多糖的 EPS 模型成分比 Corexit 導(dǎo)致海水中膠束的自組裝甚至 當這些成分的濃度很低時。 這個 表明 EPS 在形成方面與 Corexit 相同或更有效 乳液。 然而,關(guān)于相互作用的更系統(tǒng)的研究 不同組件的不同組合,以及更多型號 單獨的化合物,可能需要更多地闡明在我們的中宇宙實驗中觀察到的復(fù)雜性。


致謝


這項研究得到了墨西哥灣的資助 支持名為 ADDOMEx 的聯(lián)盟研究的研究計劃 (微生物對分散劑和油的聚集和降解 Exopolymers) 聯(lián)盟。 原始數(shù)據(jù)可以在海灣找到 墨西哥研究倡議信息和數(shù)據(jù)合作組織 (GRIIDC) 在網(wǎng)址 https://doi.org/10.7266/N7PK0D64; https://doi.org/10。 7266/N78P5XZD; https://doi.org/10.7266/N74X568X; https://doi. org/10.7266/N79W0D1K。


參考


Angarska, J.K., Dimitrova, B.S., Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., Lips, A., 2004. Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture. Langmuir 20, 1799–1806. https://doi.org/10.1021/la035751.


Bopp, R., Santschi, P.H., Li, Y.-H., Deck, B.L., 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems. Org. Geochem. 3, 9–14. https://doi. org/10.1016/0146-6380(81)90007-3.


Bretherton, L., Williams, A.K., Genzer, J., Hillhouse, J., Kamalanathan, M., Finkel, Z.V., Quigg, A., 2018. Physiological response of 10 phytoplankton species exposed to Macondo oil and Corexit. J. Phycol. 54 (3), 317–328. https://doi.org/10.1111/jpy. 12625.


Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. https://doi.org/10.1146/annurev.marine.010908.163904.


Cai, Z., Gong, Y., Liu, W., Fu, J., O'Reilly, S.E., Hao, X., Zhao, D., 2016 Aug 15. 2016. A surface tension based method for measuring oil dispersant concentration in seawater. Mar. Pollut. Bull. 109 (1), 49–54. https://doi.org/10.1016/j.marpolbul.2016.06.028.


Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Ltd, London. Chin, W.-C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. https://doi.org/10. 1038/35345.


Chiu, M.-H., Garcia, S.G., Hwang, B., Claiche, D., Sanchez, G., Aldayafleh, R., Tsai, S.-M., Santschi, P.H., Quigg, A., Chin, W.-C., 2017. Corexit, oil and marine microgels. Mar. Pollut. Bull. 122, 376–378. https://doi.org/10.1016/j.marpolbul.2017.06.077.


da Cruz, G.F., Angolini, C.F.F., dos Santos Neto, E.V., Loh, W., Marsaioli, A.J., 2010. Exopolymeric substances (EPS) produced by petroleum microbial consortia. J. Braz. Chem. Soc. 21 (8), 1517–1523. https://doi.org/10.1590/S0103- 50532010000800016.


Decho, A.W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. https://doi.org/10.1010/S0278-4343(00)00022-4.


Doyle, S.M., Whitaker, E.A., De Pascuale, V., Wade, T.L., Knap, A.H., Santschi, P.H., Quigg, A., Sylvan, J.B., 2018. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and corexit. Front. Microbiol. 1–16. https://doi.org/10.3389/fmicb.2018.00689. Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, UK. Ghosh, A.K., Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloidsa. In: Intech Open Science, https://doi.org/10.5772/50561. Guo, L., Coleman Jr., C.H., Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem. 45, 105–119. https://doi. org/10.1016/0304-4203(94)90095-7.


Gutierrez, T., Shimmield, T., Haidon, C., Black, K., Green, D.H., 2008. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. Strain TG12. Appl. Environ. Microbiol. 4867–4876. https:// doi.org/10.1128/AEM.00316-08.


Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., 2017. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environ. Sci. Technol. 51, 3233–3241. https://doi.org/10.1021/acs.est.6b05475.


Hatcher, P.G., Obeid, W., Wozniak, A.S., Xu, C., Zhang, S., Santschi, P.H., Quigg, A., 2018. Identifying oil/marine snow associations in mesocosm simulations of the deep water horizon oil spill event using solid-state 13C NMR spectroscopy. Mar. Pollut. Bull. 126, 159–165. https://doi.org/10.1016/j.marpolbul.2017.11.004.


Hung, C.-C., Santschi, P.H., 2001. Spectrophotometric determination of total uronic acids in seawater using cation exchange separation and pre-concentration lyophilization. Anal. Chim. Acta 427, 111–117. https://doi.org/10.1016/S0003-2670(00)01196-X.


Hung, C.-C., Guo, L., Schultz, G., Pinckney, J.L., Santschi, P.H., 2003. Production and fluxes of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 17 (2), 1055. https://doi.org/10.1029/2002GB001988. Kamalanathan, M., Schwehr, K.A., Bretherton, L.J., Genzer, J., Hillhouse, J., Xu, C., Williams, A., Santschi, P.H., Quigg, A., 2018. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform infrared spectroscopy. Mar. Pollut. Bull. 130, 170–178. https://doi.org/10.1016/j.marpolbul.2018.03.027.


McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316. https://doi.org/10.1039/C0SM00549E. Millero, F.J., 1996. Chemical Oceanography. CRC Press, Boca Raton, FL, pp. 469. Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107, 254–255.


Padday, J.F., Pitt, A.R., Pashley, R.M., 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc., Faraday Trans. 1 71, 1919–1931. https://doi.org/10.1039/F19757101919.


Passow, U., Hetland, R.D., 2016. What happened to all of the oil? Oceanography 29, 88–95. https://doi.org/10.5670/oceanog.2016.73.


Pletikapic, G., Lannon, H., Murvai, U., Kellermayer, M.S.Z., Svetlicic, V., Brujic, J., 2014. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys. J. 107, 355–364. https://doi.org/10.1016/j.bpj.2014.04.065.


Prairie, J.C., Ziervogel, K., Camassa, R., McLaughlin, R.M., White, B.L., Dewald, C., Arnosti, C., 2015. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175, 28–38. https://doi.org/10.1016/j.marchem.2015.04.006.


Quigg, A., Passow, U., Chin, W.-C., Xu, C., Doyle, S., Bretherton, L., Kamalanathan, M., Williams, A.K., Sylvan, J.B., Finkel, Z.V., Knap, A.H., Schwehr, K.A., Zhang, S., Sun, L., Wade, T.L., Obeid, W., Hatcher, P.G., Santschi, P.H., 2016. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 1, 3–26. https://doi.org/10.1002/lol2.10030.


Santschi, P.H., 2017. Texas A&M University Introduces Exopolymeric Substances as Agents in Enhancing the Self-Cleansing Capacity of Natural Waters. American Exopolymerics Science & Technology 25 feature article. http://www. paneuropeannetworks.com/special-reports/american-exopolymerics/. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380. https://doi.org/10.5004/dwt.2010.1079.


Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, E.K., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. https://doi.org/10.1016/0003- 2697(85)90442-7.


Sun, L., Xu, C., Zhang, S., Lin, P., Schwehr, K.A., Quigg, A., Chiu, M.-H., Chin, W.-C., Santschi, P.H., 2017. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681. https://doi.org/10.1016/j.chemosphere.2017. 04.099.


Tako, M., 2015. The Principle of Polysaccharide Gels. Adv. Biosci. Biotechnol. 6, 22–36. https://doi.org/10.4236/abb.2015.61004.


Tcholakova, S., Denkov, N.D., Lips, A., 2008. Phys. Chem. Chem. Phys. 10, 1608–1627. Tsai, S.M., Bangalore, P., Chen, E.Y., Lu, D., Chiu, M.H., Suh, A., Gehring, M., Cangco, J.P., Garcia, S.G., Chin, W.C., 2017. Graphene-induced apoptosis in lung epithelial cells through EGFR. J. Nanopart. Res. 19, 262–275. https://doi.org/10.1007/s11051- 017-3957-9.


Verdugo, P., Santschi, P.H., 2010. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res. II 57, 1486–1493. https://doi.org/10.1016/j.dsr2.2010. 03.002.


Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U., Santschi, P.H., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. https://doi.org/10.1016/j.marchem.2004.06.017.


Wade, T.L., Sweet, S.T., Sericano, J.L., Guinasso Jr., N., Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Shiller, A.M., Lohrenz, S.E., Joye, S.B., 2011. Analyses of water samples from the deepwater horizon oil spill: documentation of the sub-surface plume. In: Liu, Y. (Ed.), Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series. Vol. 195. AGU, Washington, D. C, pp. 77–82.


Wade, T.L., Morales-McDevitt, M., Bera, G., Shi, D., Sweet, S., Wang, B., Gold-Bouchot, G., Quigg, A., Knap, A.H., 2017. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Marine Heliyon 3, e00419. https://doi.org/10.1016/j.heliyon.2017.e00419.


Wang, L., Yoon, R.-H., 2004. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte. Langmuir 20, 11457–11464. https://doi.org/10. 1021/la048672g.


Warszynski, P., Barzyk, W., Lunkenheimer, K., Fruhner, H., 1998. Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment. J. Phys. Chem. B 102, 10948. https://doi.org/10.1021/jp983901r. Xu, C., Zhang, S.J., Chuang, C.Y., Miller, E.J., Schwehr, K.A., Santschi, P.H., 2011. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 126, 27–36. https://doi.org/10.1016/j.marchem.2011.03.004.


Xu, C., Zhang, S., Beaver, M., Wozniak, A., Obeid, W., Lin, Y., Wade, T.L., Schwehr, K.A., Lin, P., Sun, L., Hatcher, P.G., Kaiser, K., Chin, W.-C., Chiu, M.-H., Knap, A., Kopp, K., Quigg, A., Santschi, P.H., 2018a. Decreased sedimentation efficiency of petro-carbon and non-petro-carbon caused by water-accommodated-fraction (WAF) and Corexitenhanced water-accommodated-fraction (CEWAF) in a coastal microbial communityseeded mesocosmt. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.002.


(In press). Xu, C., Zhang, S., Beaver, M., Lin, P., Sun, L., Doyle, S.M., Sylvan, J.B., Wozniak, A., Hatcher, P.G., Kaiser, K., Yan, G., Schwehr, K.A., Lin, Y., Wade, T.L., Chin, W.-C., Chiu, M.-H., Quigg, A., Santschi, P.H., 2018b. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.005. (In press).


Z?ncker, B., Bracher, A., R?ttgers, R., Engel, A., 2017. Variations of the organic matter composition in the sea surface microlayer: a comparison between open ocean, coastal, and upwelling sites off the Peruvian coast. Front. Microbiol. 8, 2369. https:// doi.org/10.3389/fmicb.2017.02369.



蛋白質(zhì)外聚物中多糖的比例——摘要、簡介

蛋白質(zhì)外聚物中多糖的比例——方法

蛋白質(zhì)外聚物中多糖的比例——結(jié)果與討論

蛋白質(zhì)外聚物中多糖的比例——結(jié)論、致謝!

国内精品久久久久久影视8_99久久精品国产一区二区三区_国产精品国产三级欧美二区 _成人在线国产
麻豆精品视频在线| 日韩欧美123| 欧美在线免费播放| 久久久久久夜精品精品免费| 亚洲卡通动漫在线| 国产乱码精品1区2区3区| 欧美色综合久久| 国产精品情趣视频| 久久国产尿小便嘘嘘尿| 在线观看区一区二| 中文字幕一区二区不卡| 激情文学综合丁香| 欧美丰满少妇xxxxx高潮对白| 中文字幕日韩一区二区| 韩国欧美一区二区| 欧美成人激情免费网| 五月激情六月综合| 日本精品一区二区三区高清 | 国产最新精品精品你懂的| 99久久99久久免费精品蜜臀| 欧美变态tickling挠脚心| 亚洲狠狠丁香婷婷综合久久久| 高清成人在线观看| 久久精品一区八戒影视| 国产精品456| 久久久久久久久久久久电影 | 蜜桃av噜噜一区| 欧美撒尿777hd撒尿| 亚洲福利国产精品| 欧美视频日韩视频| 亚洲五码中文字幕| 9191国产精品| 麻豆91精品视频| 成人小视频在线观看| 欧美精品一区二| 国产在线视频一区二区| 国产欧美日韩久久| 国产成人精品午夜视频免费| 2021国产精品久久精品| 国产精品香蕉一区二区三区| 欧美激情一二三区| 91日韩一区二区三区| 一区二区在线电影| 欧美久久久久久蜜桃| 日本不卡中文字幕| 精品国产乱子伦一区| 国产传媒日韩欧美成人| 国产精品麻豆视频| 欧美色国产精品| 久久99国内精品| 综合久久综合久久| 欧美日韩免费高清一区色橹橹| 日韩va欧美va亚洲va久久| 日本不卡视频一二三区| 国产一区二区三区在线观看免费 | 亚洲自拍都市欧美小说| 欧美影视一区在线| 九色综合狠狠综合久久| 国产精品美女久久久久久久| 欧美午夜一区二区三区| 久久精品国产久精国产爱| 国产精品全国免费观看高清| 欧美性猛交xxxxxx富婆| 国产一区二区看久久| 一区二区在线免费观看| 26uuu色噜噜精品一区| 在线观看日产精品| 国产成人精品免费网站| 日韩高清国产一区在线| 国产欧美一区二区精品仙草咪| 欧美三级三级三级爽爽爽| 国产麻豆精品久久一二三| 香蕉成人伊视频在线观看| 国产欧美一二三区| 国产黑丝在线一区二区三区| 麻豆91精品视频| 国产人成一区二区三区影院| 欧美日韩久久一区二区| 成人avav影音| 激情综合网av| 亚洲福中文字幕伊人影院| 国产精品全国免费观看高清| 欧美精品 日韩| 91福利在线播放| 国产成人精品网址| 国产真实乱子伦精品视频| 午夜在线电影亚洲一区| 亚洲欧美视频在线观看视频| 久久综合资源网| 欧美一区三区二区| 欧美日韩免费一区二区三区视频| 成人午夜短视频| 国产精品一二三四五| 日韩av在线发布| 亚洲午夜久久久| 亚洲一区二区五区| 亚洲免费观看高清完整版在线观看| 国产色产综合色产在线视频| 日韩一区二区视频| 欧美精品乱人伦久久久久久| 在线观看区一区二| 欧美影院一区二区| 欧美色爱综合网| 欧美体内she精高潮| 99国产欧美久久久精品| 成人国产精品免费观看动漫 | 亚洲香蕉伊在人在线观| 亚洲特级片在线| 亚洲色欲色欲www在线观看| 国产精品青草久久| 亚洲欧洲国产日韩| 国产精品夫妻自拍| 亚洲日本在线a| 夜夜爽夜夜爽精品视频| 亚洲精品免费在线播放| 亚洲一级二级在线| 天堂va蜜桃一区二区三区| 天使萌一区二区三区免费观看| 天天综合网天天综合色| 丝瓜av网站精品一区二区 | 亚洲成人综合网站| 亚洲高清视频中文字幕| 日韩中文字幕不卡| 激情欧美一区二区| 懂色av一区二区夜夜嗨| 99在线精品免费| 91福利小视频| 日韩小视频在线观看专区| 亚洲国产精品v| 一区二区三区欧美亚洲| 欧美日韩一区三区四区| 在线视频综合导航| 欧美日本一区二区| 亚洲精品在线网站| 国产精品久久久爽爽爽麻豆色哟哟 | 韩国成人精品a∨在线观看| 国产成人av一区二区三区在线观看| 成人丝袜18视频在线观看| 91丨porny丨国产| 日韩一级二级三级| 国产精品超碰97尤物18| 亚洲成人中文在线| 久久精品国产99久久6| 成人av先锋影音| 91精品国产乱| 国产精品日产欧美久久久久| 亚洲午夜在线视频| 国产成人综合网站| 3d动漫精品啪啪1区2区免费| 国产丝袜美腿一区二区三区| 一区二区三区四区在线播放| 久久精品国产99| 日本精品免费观看高清观看| 2020国产精品| 亚洲大片精品永久免费| 国产精品亚洲一区二区三区妖精| 日本伦理一区二区| 国产亚洲制服色| 偷拍日韩校园综合在线| 成人福利视频在线看| 日韩一级黄色片| 亚洲午夜久久久久久久久久久| 豆国产96在线|亚洲| 日韩三级.com| 亚洲国产精品久久久久秋霞影院| 韩国毛片一区二区三区| 欧美群妇大交群的观看方式| 亚洲欧洲日产国产综合网| 激情六月婷婷久久| 538在线一区二区精品国产| 最新国产の精品合集bt伙计| 久久国产精品无码网站| 欧美视频在线播放| 亚洲三级在线观看| 不卡视频在线看| 国产日韩在线不卡| 精品午夜久久福利影院| 91精品久久久久久蜜臀| 亚洲一区二区欧美日韩 | 国产99久久久精品| 欧美精品一区二区三| 午夜av一区二区| 色一区在线观看| 日韩毛片视频在线看| av动漫一区二区| 最新不卡av在线| 在线看国产一区二区| 一区二区三区波多野结衣在线观看| 不卡一卡二卡三乱码免费网站| 国产日韩欧美一区二区三区乱码| 国内精品久久久久影院薰衣草| 日韩欧美美女一区二区三区| 美女网站一区二区| 日韩丝袜情趣美女图片| 蜜桃传媒麻豆第一区在线观看| 日韩亚洲欧美中文三级| 激情综合色播五月| 久久久不卡网国产精品一区| 国产一级精品在线| 国产精品对白交换视频|