合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 平面流動(dòng)皂膜表面張力系數(shù)、厚度和流動(dòng)速度實(shí)驗(yàn)裝置及測(cè)量方法(一)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機(jī)制(中)
> 納米熔鹽形成機(jī)理、表面張力測(cè)定及影響因素研究(三)
> 人胰島素的朗繆爾單分子層膜的表面化學(xué)和光譜學(xué)性質(zhì)——實(shí)驗(yàn)部分
> 座滴法測(cè)量玻璃熔體表面張力裝置、步驟
> 無機(jī)鹽對(duì)油/水界面張力及對(duì)油滴鋪展的影響規(guī)律
> 桐油基衍生物鈉鹽的表面張力、CMC值測(cè)定、乳液穩(wěn)定性、固化膜性能測(cè)試(二)
> 添加表面活性劑抑制瓦斯解吸效果及機(jī)理分析
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測(cè)試與篩選(二)
> 肺泡液-氣界面的表面張力的作用及生理意義
推薦新聞Info
-
> 一文讀懂什么是超微量天平
> LiF-CaF?-Yb?O?熔鹽體系表面張力的測(cè)定及其對(duì)Ni-Yb合金電解的指導(dǎo)意義(二)
> LiF-CaF?-Yb?O?熔鹽體系表面張力的測(cè)定及其對(duì)Ni-Yb合金電解的指導(dǎo)意義(一)
> 表面張力在封閉腔體自然對(duì)流換熱中的角色深度分析
> 鉑金板法測(cè)定不同濃度、溫度、表面活性劑對(duì)氨水表面張力值(二)
> 鉑金板法測(cè)定不同濃度、溫度、表面活性劑對(duì)氨水表面張力值(一)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測(cè)試與篩選(三)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測(cè)試與篩選(二)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測(cè)試與篩選(一)
> 紫檀芪的穩(wěn)定性增強(qiáng)型抗氧化劑制作備方及界面張力測(cè)試——結(jié)果與討論、結(jié)論
電化學(xué)氧化對(duì)液態(tài)金屬表面張力的影響機(jī)制:表面張力可隨電位變化
來源:Jerry 液態(tài)金屬FM 瀏覽 1507 次 發(fā)布時(shí)間:2024-11-07
液態(tài)金屬的表面張力是決定其應(yīng)用性能的關(guān)鍵因素之一。現(xiàn)有研究表明,通過電化學(xué)氧化可以顯著降低液態(tài)鎵銦合金的表面張力,這不僅能改變其形態(tài),還可能賦予其新的功能特性。此外,液態(tài)金屬的電化學(xué)行為在電池電極材料、電化學(xué)電容器等領(lǐng)域也得到了深入研究,因?yàn)檫@種材料能夠在表面氧化或還原的過程中調(diào)控其界面特性和反應(yīng)活性。
電化學(xué)氧化作用可以誘導(dǎo)液態(tài)金屬表面生成不同的氧化物或氫氧化物薄層,而這種表面變化對(duì)界面張力的影響非常顯著。例如,研究發(fā)現(xiàn),氧化鎵薄膜會(huì)在特定的電位下破裂并溶解,使得液態(tài)金屬的表面張力急劇下降。通過控制電化學(xué)氧化的電位,能夠在微觀層面實(shí)現(xiàn)液態(tài)金屬的“開關(guān)”效應(yīng),有望用于開發(fā)可控液態(tài)金屬元件。
近日,Michael D.Dickey教授團(tuán)隊(duì)針對(duì)鎵銦合金在強(qiáng)堿性條件下的電化學(xué)氧化過程進(jìn)行了系統(tǒng)分析,深入探討了電化學(xué)氧化對(duì)液態(tài)金屬表面張力的影響機(jī)制。作者采用線性掃描伏安法(LSV)、循環(huán)伏安法(CV)和電流-電壓時(shí)序分析等電化學(xué)技術(shù),以1 M氫氧化鈉(NaOH)溶液為電解液,在電化學(xué)氧化過程中實(shí)時(shí)測(cè)量鎵銦合金液滴的電流和界面張力變化,通過圖像分析軟件進(jìn)行液滴形狀測(cè)量,從而得到其在不同電位下的界面張力值。相關(guān)研究成果以The Role of Electrochemical Oxidation on the Interfacial Tension of Eutectic Gallium Indium為題發(fā)表在ACS Electrochemistry.研究發(fā)現(xiàn),根據(jù)電位的不同,鎵銦合金在電化學(xué)氧化過程中表現(xiàn)出六個(gè)獨(dú)特的反應(yīng)區(qū)域,每個(gè)區(qū)域?qū)?yīng)著不同的界面現(xiàn)象和表面張力變化:
非氧化區(qū)域:在開路電位以下,液態(tài)金屬界面保持高張力狀態(tài),接近金屬本體張力,因?yàn)楸砻嫜趸瘜釉诟邏A性環(huán)境中迅速溶解,無法形成穩(wěn)定的氧化皮膜。
初始氧化區(qū)域:在略高于開路電位時(shí),鎵開始發(fā)生氧化反應(yīng),但生成的氧化物不在表面堆積,而是持續(xù)溶解,因此表面張力沒有明顯降低。鈍化薄膜形成:隨著電位繼續(xù)升高,鎵表面逐漸形成一層薄的氧化膜,電流開始下降,表面逐漸進(jìn)入鈍化狀態(tài),推測(cè)該薄膜為鎵氧化物的水合物薄層。
鈍化膜破裂:在更高的電位下,表面鈍化膜開始分解,界面張力迅速下降,表明表面氧化物膜不再穩(wěn)定,開始被溶解并形成新的界面形態(tài)。
穩(wěn)定氧化階段:在這一電位范圍內(nèi),氧化鎵物種形成溶解平衡,表面張力隨電位線性下降,金屬液滴的形狀變得更加不穩(wěn)定并開始形成枝狀結(jié)構(gòu)等復(fù)雜形態(tài)。
再鈍化階段:在更高電位下,表面部分重新鈍化,表面張力略有回升,液滴變形的趨勢(shì)得到一定抑制,推測(cè)是表面形成了新的氧化層薄膜。
通過這些實(shí)驗(yàn)和電化學(xué)分析,作者不僅展示了鎵銦合金在電化學(xué)氧化過程中的界面變化,還進(jìn)一步揭示了表面張力隨電位變化的規(guī)律。這一研究為控制液態(tài)金屬的表面特性提供了新思路,未來有望應(yīng)用于開發(fā)可精確控制的柔性電子元件、液態(tài)金屬傳感器及微流體操控系統(tǒng)。
圖1電化學(xué)線性掃描伏安圖(LSV,藍(lán)色實(shí)線)及液滴電流的對(duì)數(shù)圖(紅色虛線),針對(duì)1 M NaOH中的鎵銦合金,掃描速率為0.5 mV/s。垂直虛線將圖中標(biāo)記的六個(gè)反應(yīng)區(qū)域區(qū)分開來,標(biāo)記出三個(gè)氧化峰P1、P2和P3。
圖2(a)在300 mV/s掃描速率下,鎵銦合金液滴在1 M NaOH中的循環(huán)伏安圖。(b)不同掃描速率(50至600 mV/s)下的鎵銦合金液滴循環(huán)伏安圖。
圖3(a)鎵銦合金(藍(lán)色實(shí)線)與純鎵(紅色虛線)在1 M NaOH中以16000 mV/s的高掃描速率記錄的快速掃描循環(huán)伏安圖。(b)鎵銦合金在不同電位窗口下的快速掃描循環(huán)伏安圖。圖例中列出了每個(gè)掃描的最大電位,掃描速率為16000 mV/s。橙色圓圈標(biāo)記處顯示了與第一次電子轉(zhuǎn)移反應(yīng)(Ga到Ga+)相關(guān)的微小肩峰。
圖4(a)鎵銦合金在不同濃度NaOH中的近鈍化區(qū)伏安圖。(b)鎵銦合金在不同濃度NaOH中的完整線性掃描伏安圖,掃描速率為100 mV/s。
圖5電流的對(duì)數(shù)圖(藍(lán)色實(shí)線)與液態(tài)金屬界面張力(IFT,紅色虛線)隨電位變化的關(guān)系。鎵銦合金液滴的體積為0.025 mL,電位掃描速率為1 mV/s。





