合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 洗發(fā)水中的表面活性劑
> 測量表面活性劑濃度是用靜態(tài)表面張力儀還是動態(tài)表面張力儀?
> Delta-8調(diào)整表面活性劑的質(zhì)量比實現(xiàn)類似于帶電荷的聚合電解質(zhì)-表面活性劑混合體系的相分離(下)
> 起泡和去污的關(guān)鍵成分——表面活性劑
> LB膜分析儀-PPI多聚磷酸肌醇磷脂的應用(上)
> 探索泡沫粗化與表面流變學之間的關(guān)聯(lián)性疏水性蛋白——材料和方法
> LB膜分析儀的選型指南
> 全自動表面張力儀測量時遇到這些情況怎么辦
> 水的浮力與液體表面張力的內(nèi)涵及區(qū)別
> 納米顆粒對二元硝酸鹽表面張力和密度的影響
推薦新聞Info
-
> 全氟庚烷端基聚丙烯酸(FPAA)合成方法及水溶液表面張力測定
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(下)
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(上)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(三)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(二)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(一)
> 氣凝膠的合成方法及干燥方法一覽
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(二)
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(一)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(三)
基于表面張力的仿水黽機器人研究
來源:張新彬 瀏覽 1343 次 發(fā)布時間:2022-10-17
人類主要生活在陸地上,對海洋、湖泊等水域環(huán)境認識能力有限,水上行走機器人能夠拓展人類活動范圍,推進人們對未知水域的探索。微型化、群控化是機器人研究的一個重要方向,相比船、機器魚等傳統(tǒng)水上裝置,微型仿水黽機器人具有體積小、重量輕、低能耗、低噪音、低成本、活動范圍廣等優(yōu)點,群體作業(yè)可以執(zhí)行水質(zhì)監(jiān)測、水上偵查、水上搜索與救援等任務,具有廣闊的應用前景。
此外,仿水黽機器人涉及仿生學、MEMS、先進材料、機器人學以及流體力學等學科,一些關(guān)鍵技術(shù)觸及相關(guān)領(lǐng)域最前沿,因此相關(guān)研究的開展能夠同時推動多門學科技術(shù)的共同發(fā)展,具有重要的科學意義。水黽獨特的身體構(gòu)型與運動方式賦予其靈活、快速、高效的水面運動能力,具有很高的合理性和科學性。
本文從水黽水面運動生物學機理出發(fā),探討了表面張力驅(qū)動的生物學原理,深入分析了超疏水材料潤濕特性以及機器人水-空氣界面運動與水之間相互作用,在此基礎上研制了一款新型表面張力驅(qū)動微型仿水黽機器人。
首先,基于尺度效應及流體力學無量綱數(shù),定性分析了水黽水面運動的主導作用力,充分認識了水黽水面漂浮與運動的生物學原理,以及表面張力作用機理,明確了本次仿生的基本思想及依據(jù)。基于潤濕理論與最小界面自由能原理,從移動三相接觸線角度出發(fā),分別建立了超疏水材料接觸角滯后模型以及水壓引起的超疏水性失效模型,并借助實驗及分子動力學模擬進行了驗證,在此基礎上對本文制備的銅基底仿水黽超疏水材料相應潤濕特性進行了分析,為仿水黽機器人水面運動負載能力計算、穩(wěn)定性分析以及劃水頻率的制定提供依據(jù)。提出了并排多細長圓柱體與水面接觸相互作用模型,分析掌握了圓柱體表接觸角、截面半徑以及相對位置等因素對圓柱體-水相互作用影響規(guī)律,用于機器人支撐系統(tǒng)設計及負載能力分析;分別建立了機器人腿平行水面劃水運動受力模型以及刺破水面臨界條件分析模型,提出了一個無量綱數(shù)用于刺破水面判定,為仿水黽機器人水面運動動力學分析奠定理論基礎。
基于水黽生物學機理,明確了仿水黽機器人研制的基本原則;提出了一種新型凸輪連桿驅(qū)動機構(gòu)用于模仿水黽中腿空間類橢圓形軌跡劃水動作;基于并排多細長圓柱體與水面接觸相互作用模型,設計了機器人支撐系統(tǒng)并進行了水面負載能力計算分析。基于細長圓柱體與水面接觸相互作用分析,提出了仿水黽機器人水面運動穩(wěn)定性分析模型,定義了一種類質(zhì)量-彈簧-阻尼模型用于描述機器人與水之間相互作用,分析了驅(qū)動腿沖擊水面及安裝位置對機器人水面運動穩(wěn)定性影響規(guī)律;建立了機器人水面運動動力學模型,并借助ADAMS進行了仿真分析。最后,研制機器人試驗樣機并進行實驗,觀察了驅(qū)動腿劃水動作及軌跡,測試了不同劃水頻率、不同劃水步態(tài)下機器人水面運動能力,并與仿真結(jié)果進行了對比分析,驗證了動力學模型及仿真方法的有效性;通過對比其它仿水黽機器人,從穩(wěn)定性和能耗兩個方面討論了本機器人驅(qū)動腿采用的仿水黽劃水方式的優(yōu)點;借助表面張力相關(guān)兩個流體力學無量綱數(shù)對機器人與水黽進行了水面運動動力相似性分析,討論了本次仿生的效果。